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Indications of hysteresis and early warning signals

of reduced community resilience during a
Bering Sea cold anomaly
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ABSTRACT: The presence of early warning signals (EWS) for regime shifts was tested for in the
Bering Sea demersal community during a 2006 to 2013 cold anomaly. During this cold period,
community-wide recruitment and distribution patterns failed to reverse responses observed dur-
ing the previous 2 to 4 decades of warming. These observations are consistent with a model of
alternative states—a cold community state and warm community state —separated by hysteresis
in the response to temperature. This model predicts that declining resilience of the warm commu-
nity state during the cold anomaly should have been accompanied by elevated EWS as the system
experienced critical slowing down in recovery from stochastic perturbations. This prediction was
tested with time series for 3 EWS (temporal autocorrelation, spatial variability, spatial autocorre-
lation) calculated from distribution data for 12 common fishes and crabs from the Bering Sea trawl
survey (1982 to 2015, n = 285 sets yr™!), for a total of 36 taxon x EWS combinations. Fifteen of the
36 time series were significantly elevated during the cold anomaly (community-wide randomiza-
tion test, p < 0.0001). Comparison with a ‘control’ group of 3 cold years outside of the cold anomaly
failed to replicate observations of elevated EWS, suggesting that the EWS signal was due to the
persistent perturbation of the cold anomaly rather than temperature effects on the distribution and
behavior of study animals per se. These results suggest that theoretical predictions for EWS may
be supported in large ecosystems such as the Bering Sea.
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INTRODUCTION

Biological communities occasionally undergo ab-
rupt ‘regime shifts' between persistent contrasting
states (Isaacs 1975, Mollman et al. 2015). As the pace
of anthropogenic perturbation to ecosystems in-
creases globally, there is an expectation that regime
shifts will become more common (Moéllman et al.
2015). Accordingly, there is great interest in develop-
ing approaches that will give early warning of
impending regime shifts, either to allow managers to
attempt to prevent the shift, or at least to provide the
opportunity to prepare for sudden disruption to cou-
pled ecological-economic systems.

*Corresponding author: litzow@faralloninstitute.org

Recently, the idea that systems approaching a
regime shift might present characteristic statistical
behaviors that could serve as early warning signals
(EWS) of the shift has been advanced in the ecologi-
cal literature. This idea has been successfully demon-
strated with a variety of simple ecological models
(Scheffer et al. 2009, Kéfi et al. 2013), by experimen-
tal manipulations to laboratory microcosms (Drake &
Griffen 2010, Dai et al. 2012), and in simple, small,
closed ecosystems (Carpenter et al. 2011, Veraart et
al. 2012, Wang et al. 2012). This research suggests
the possibility that EWS might ultimately be useful in
the large, complex, open ecosystems that are of most
interest to managers. While the concept of ecosys-
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tem-based fisheries management (EBFM) has been
around for decades, ecologists have struggled to find
a way to condense the vast amount of information
that might be monitored in an ecosystem into a quan-
titative summary of ecosystem state that would con-
vey useful information to managers (Essington &
Punt 2011). With their promise of a simple approach
for quantifying the relative likelihood that a system
might undergo a regime shift, EWS seem to present
exactly the sort of tool that is needed in this context.

However, attempts to apply EWS to large, complex
systems have produced mixed results (Litzow & Hun-
sicker 2016). A number of potential problems may
complicate the application of EWS in 'real world'
management situations. A particular problem is that
the true model of dynamics underlying a regime shift
is never known in large, complex systems (Moéllman
et al. 2015). There are many classes of theoretical
regime shift models, some of which produce EWS,
others of which do not (Hastings & Wysham 2010,
Kéfi et al. 2013, Dakos et al. 2015). If empirical ecolo-
gists are unsure which, if any, of these models
applies to their system, little guidance is available on
whether EWS should be present or not.

Empirical work on EWS might therefore benefit
from attempts to determine if the study system is gov-
erned by a model showing EWS dynamics. The most
obvious choice would be the ‘saddle node’ or ‘fold
bifurcation' model of alternative stable states, which
has been the focus of most theoretical EWS research
(Carpenter & Brock 2006, Scheffer et al. 2009, Boet-
tiger & Hastings 2012b, Dakos et al. 2015). Under this
model, a system experiences critical slowing down as
it approaches a tipping point into an alternative state.
Critical slowing down occurs because as the system
approaches the tipping point (ecological resilience
declines), the basin of attraction shoals (engineering
resilience declines). Stochastic perturbations are
then more able to dislodge the system from its mean
condition, and recovery to the mean becomes slower
(Scheffer et al. 2009, Boettiger & Hastings 2012b,
Dakos et al. 2015). The most commonly proposed
EWS are statistical signals of critical slowing down,
such as increased spatial-temporal variability and
autocorrelation in key system parameters (Scheffer
et al. 2012).

Systems governed by alternative stable state dy-
namics are therefore logical choices for empirical re-
search on EWS. However, demonstrating the presence
of alternative stable states in large, open ecosystems
is extremely difficult (Petraitis & Dudgeon 2004,
Schroder et al. 2005, Dudgeon et al. 2010). Because
conclusive tests for alternative stable states in these

systems are typically impossible, ecologists interested
in alternative stable state dynamics have tested for
key observations that provide hints that these dynam-
ics may be at work. One of these key observations is
hysteresis, or reaction to an external forcing parameter
that differs for different directions of change in exter-
nal conditions, due to positive feedbacks in the system
or a difference in the set of variables controlling the
biological response in different states (Scheffer & Car-
penter 2003, Bestelmeyer et al. 2011, Wang et al.
2012). While conclusive demonstration of hysteresis
with observational data is extremely challenging,
tests for state-dependent behavior in driver-response
relationships are statistically straightforward, and al-
low empiricists to test for dynamics that are consistent
with hysteresis. Specifically, the expectation for hys-
teresis is that the biological response depends on the
direction of change in the external parameter (Beisner
et al. 2003, Samhouri et al. 2010, Hunsicker et al.
2016). This test provides necessary but not sufficient
evidence for the presence of hysteresis and alternative
states (Beisner et al. 2003, Petraitis & Dudgeon 2016).
This approach offers an attractive compromise be-
tween the need to demonstrate the suitability of a
given system for EWS research, and the difficulties of
testing for nonlinear dynamics in empirical systems
(Litzow & Hunsicker 2016).

Recently, the eastern Bering Sea, a highly produc-
tive ecosystem that supports extremely valuable fish-
eries, has exhibited possible hysteresis in community
responses to climate variability. During most of the
20th century, fish and crustacean communities in the
Bering Sea and neighboring Gulf of Alaska were
tightly coupled with temperature. Climate shifts asso-
ciated with the Pacific Decadal Oscillation in the
1940s (warm to cold) and 1976/1977 (cold to warm)
were associated with abrupt community-wide
changes in population trajectories. The 1976/1977
event was particularly well studied. This climate shift
resulted in a sudden ~1°C increase in average winter
sea surface temperatures (SST) in the Bering Sea and
Gulf of Alaska, which was associated with rapid
increases in the abundance of salmon Oncorhynchus
spp., and most groundfishes (e.g. cod Gadus macro-
cephalus, rock sole Lepidopsetta spp.), and rapid
declines in abundance of cold-water groundfishes
(e.g. Greenland turbot Reinhardtius hippoglossoides)
and crustaceans (shrimp, crabs; Mantua et al. 1997,
Anderson & Piatt 1999, Benson & Trites 2002, Conners
et al. 2002, Litzow 2006). Overfishing also contributed
to the collapse of crustacean stocks (Orensanz et al.
1998). Changes in recruitment (for groundfish) or
early marine survival (for salmon) are thought to be
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key mechanisms causing shifts in community domi-
nance following the 1976/1977 temperature shift (Hol-
lowed et al. 2001, Mueter et al. 2002, Wilderbuer et al.
2002). In addition to these changes in recruitment and
community composition following sudden climate
shifts in the Bering Sea, community-wide responses
have also been noted during more gradual warming
since the early 1980s. In particular, warming tempera-
tures are associated with northward range shifts for
most fishes and crustaceans (Mueter & Litzow 2008,
Kotwicki & Lauth 2013). Thus, the Bering Sea commu-
nity has responded to both abrupt and gradual warm-
ing. However, between 2006 and 2013, the Bering Sea
experienced anomalous cold, with temperatures falling
to levels similar to those last seen during the cold
regime of the 1940s to 1970s. During this cold anomaly,
the Bering Sea community apparently failed toreverse
earlier biological responses to warming. Fisheries
catches remained consistent with the high-salmon,
high-groundfish, low-crustacean warm community
state. And the fish and crustacean community largely
failed to reverse previous northward distribution shifts
(Kotwicki & Lauth 2013). These observations suggest
the possibility of hysteresisin community—-temperature
relationships, with responses to cooling and warming
taking different trajectories over an overlapping range
of temperatures (Beisner et al. 2003).

The goals of this study were to (1) formally test for
hysteresis that would be consistent with a model of
alternative states in the response of the Bering Sea
fish and crustacean community to temperature vari-
ability; and (2) test for elevated EWS consistent with
critical slowing down and declining resilience during
the persistent perturbation of the cold anomaly. The
prediction of elevated EWS is framed in terms of hys-
teresis and possible alternative states in the commu-
nity (Box 1). Finally, EWS patterns during the cold
anomaly were compared with other cold years to test
for false positive EWS (e.g. more variable distribution
that is inherent in cold years, regardless of commu-
nity resilience). This analysis showed that commu-
nity-wide EWS were strongly elevated during the
perturbation of the cold anomaly, in agreement with
theoretical predictions.

METHODS
Study design
This study attempted to answer 2 questions: (1) is

there evidence consistent with hysteresis in the bio-
logical response to temperature variability during the

cooling period, and (2) if so, did the community show
EWS consistent with critical slowing down and
declining resilience during the period of hysteresis?
Most empirical tests of EWS have relied on observa-
tions prior to abrupt shifts that are believed to be con-
sistent with catastrophic ecosystem transitions (Lit-
zow & Hunsicker 2016). However, these events are
by their nature rare, and few such instances are
available for studying EWS behavior. In this study, a
complementary approach was taken. Rather than
testing for elevated EWS prior to an abrupt transition,
a situation indicating the likelihood of declining
resilience (i.e. delayed biological response to persist-
ent perturbation) was examined to test the theoreti-
cal prediction that this decline in resilience should be
accompanied by elevated EWS.

For the first study question, biological observations
that are available on 2 time scales were used.
Recruitment or production estimates for groundfish,
crabs, and salmon are available for the period be-
tween 1960 and 2013. North—-south patterns of com-
munity distribution are available from the Bering Sea
trawl survey between 1982 and 2015. The relevant
question in testing for hysteresis is whether the tra-
jectory of the response to cooling retraces the trajec-
tory for warming (Beisner et al. 2003), so both biology
time series were examined for responses to tempera-
ture that differed between periods of warming and
cooling trends. The peak observed winter SST dur-
ing the study occurred in 2002/2003 with a predomi-
nantly increasing temperature trend before this time,
and a decreasing trend afterwards (see '‘Data’, be-
low). Accordingly, this warmest point was used to
distinguish a period when the Bering Sea was gener-
ally warming (1960 to 2002) from a period when it
was generally cooling (2003 to 2013). In 2014/2015,
warm temperatures again reasserted themselves.
Previous studies in Alaska have shown that the pro-
cesses underlying the biological parameters used in
this study (i.e. distribution, recruitment, early marine
survival) respond to changing temperature at lags of
0 to 1 yr (Litzow 2006, Mueter & Litzow 2008, Litzow
et al. 2014), which makes the post-2002/2003 cooling
period adequately long to test for expected effects.

For the second question, EWS were calculated with
distribution data from the trawl survey. Because EWS
time series were noisy and short, a t-test approach was
used rather than a test for trends. Specifically, the pre-
diction of elevated EWS during a persistent perturba-
tion (Box 1) was tested, not by a trend test across the en-
tire cooling period, but rather by comparison of EWS
from the cold anomaly years (2006 to 2013) with other
yearsin the time series (1982 to 2005, 2014/2015).
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Box 1. Bering Sea community response to temper-
ature: observations in the context of alternate sta-
ble state theory and early warning signals (EWS).
(a) Community state is tested for response to tem-
perature variability that differs between warming
period and cooling period (solid arrows). If ob-
served, biological responses that depend on the
direction of temperature change are consistent
with hysteresis and bistability, where the warm
and cold community states can each exist over the
same range of temperature. F; and F, are critical
points denoting hypothesized fold bifurcations
between the 2 states. Directly demonstrating the
presence of fold bifurcations in observational
datasets is extremely difficult (Petraitis & Dudgeon
2004, Schroder et al. 2005, Dudgeon et al. 2010).
However, if the effects of temperature depend on
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in one important sense consistent with alternate
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Data

Groundfish and crab recruitment estimates from
age-structured assessment models, lagged to cohort
year (age-0) were obtained from the North Pacific
Fisheries Management Council (The Plan Team for
the Groundfish Fisheries of the Bering Sea and Aleu-
tian Islands 2015, The Plan Team for the King and
Tanner Crab Fisheries of the Bering Sea and Aleutian
Islands 2016). Model recruitment estimates at the
ends of time series are often not supported by empiri-
cal information on cohort strength and tend to be un-
reliable for this reason. These uncertain estimates
were identified by examining confidence intervals for
model output or from caveats included in assessment

reports, and these years were excluded from analysis.
Salmon production data (commercial catch lagged to
year of ocean entry) were obtained from the Alaska
Department of Fish and Game (www.adfg.alaska.
gov). Salmon fisheries in the Bering Sea have been
fully developed for many decades, such that catches
are considered a good proxy for interannual variabil-
ity in production (Hare et al. 1999, Hare & Mantua
2000). The relationship between catches and produc-
tion is supported by analysis of early marine survival
using spawner-recruit time series, which show re-
sponses to temperature variability that are similar to
those observed for catches (Mueter et al. 2002, 2005).
However, catch data are available at longer time
scales than spawner-recruit data, and provide more
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thorough spatial coverage, and are therefore superior
for the purposes of this study.

In order to capture the biological response to the last
cold-to-warm transition, only time series of recruit-
ment and production with at least 5 yr of data avail-
able from the pre-1976/1977 cold period in the Bering
Sea were included. The resulting group of species
included walleye pollock Gadus chalcogrammus,
Greenland turbot Reinhardtius hippoglossoides, Chi-
nook salmon Oncorhynchus tshawytscha, sockeye
salmon O. kisutch, coho salmon O. gorbuscha, chum
salmon O. keta, and Tanner crab Chionoecetes bairdi.
This group include both warm-affiliated species
(walleye pollock, salmon) and cold-affiliated species
(Greenland turbot, Tanner crab), based on past tem-
perature—abundance and temperature-recruitment
correlations (Hare & Mantua 2000, Zheng & Kruse
2006, Litzow & Urban 2009).

Biological data also included catch per unit effort
(CPUE; kg ha™! swept) from bottom trawl surveys
conducted annually by the US National Marine Fish-
eries Service during 1982 to 2015. Sampling occurs
on a 20 nautical mile (37 km) grid over a period of
8 wk between May and August. Stauffer (2004) de-
scribed the trawl survey gear and methods, and
Lauth & Nichol (2013) provided details on sampling
design and survey data analysis. To ensure data com-
parability across years, this analysis was restricted to
stations that were sampled in every year of the time
series (n = 285; Fig. 1). Species caught in this survey
that were included in the analyses are listed in
Table 1.

Climate data included Bering Sea winter SST
(November to March) extracted from the extended
reconstructed sea surface temperature (ERSST) v3b
dataset (Smith et al. 2008; www.ncdc.noaa.gov), and
summer bottom temperature as measured on the
trawl survey. Winter SST values were used because
this is the season of more coherent low-frequency
variability in North Pacific SST (Yeh et al. 2011), and
because winter SST is tightly coupled with winter ice
extent, which creates a cold pool of bottom water that
is protected from summer mixing by the thermocline,
such that winter surface temperature largely drives
variability in summer conditions for demersal taxa
(Wyllie-Echeverria & Wooster 1998, Stabeno et al.
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Fig. 1. Trawl survey stations sampled every year between
1982 and 2015. Inset shows study area location in the
Bering Sea

Table 1. Taxa used in tests for elevated early warning signals (EWS) during the 2006 to 2013 cold anomaly. Monte Carlo results

are p-values for 1-tailed tests for elevated values of each EWS during the cold anomaly compared with the rest of the 1982

to 2015 time series. AR(1): first-order temporal autocorrelation; SDL: standard deviation of log-transformed catch per
unit effort; p-values < 0.05 in bold

Common name Scientific name n (mean number Monte Carlo results
of stations present) AR(1) SDL Moran's I

Arrowtooth flounder Atheresthes spp. 152 0.3899 0.1516 0.5416
Tanner crab Chionoecetes bairdi 201 0.0486 0.3031 0.0599
Snow crab Chionoecetes opilio 208 0.0883 0.4999 0.1563
Walleye pollock Gadus chalcogrammus 276 0.0140 0.0001 0.0266
Pacific cod Gadus macrocephalus 275 0.0636 0.0568 0.1094
Flathead sole Hippoglossoides elassodon 233 0.7706 0.0016 0.9306
Pacific halibut Hippoglossus stenolepis 205 0.1705 0.7610 0.0036
Rock sole Lepidopsetta spp. 253 0.2309 0.0230 0.0668
Yellowfin sole Limanda aspera 199 0.0308 0.0284 0.0008
Alaska plaice Pleuronectes quadrituberculatus 200 0.0077 0.0089 0.0374
Sturgeon poacher Podothecus accipenserinus 168 0.0483 0.3694 0.5142
Skates Rajidae 232 0.0244 0.8748 0.4305
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2012). To ensure comparability among years, missing
bottom temperature data (4.3% of total) were esti-
mated through multiple imputation prior to analysis
(Schafer 1997). Annual mean sampling dates on the
trawl survey occurred over a range of 33 d. Because
bottom temperature shows a strong seasonal evolu-
tion, the effect of sampling date must be corrected to
allow valid among-year comparisons of bottom tem-
perature. This was accomplished by fitting a non-
parametric regression using penalized regression
splines with the package ‘'mgcv' in the computer lan-
guage R (Wood 2006, R Core Team 2016) to the rela-
tionship between mean temperature and mean sam-
pling date, and calculating corrected mean tempera-
ture as the regression residuals added to the regres-
sion intercept.

The winter SST and summer bottom temperature
time series illustrate the magnitude of the 2006 to
2013 cold anomaly (Fig. 2). Mean winter SST during
the anomaly was approximately 0.6°C lower than the
1977 to 2005 mean, and similar to the pre-1976/1977
cold period. Mean summer bottom temperatures dur-
ing the cold anomaly were approximately 1°C lower

than during the rest of the trawl survey time series.
The warmest winter in the SST time series was 2002/
2003, and the warmest bottom temperatures were
observed in summer 2003 (Fig. 2). While the warmest
winter (2002/2003) was used a priori to separate the 2
periods, an analysis of the statistical differences in
the slope of temperature on time using different
years to distinguish the ‘'warming’ and ‘cooling’ peri-
ods in the 2 temperature time series supports the des-
ignation used (see Fig. S1 in the Supplement at www.
int-res.com/articles/suppl/m571p013_supp.pdf).

Analysis

Question 1:
Is there evidence consistent with hysteresis?

A schematic of the steps used in analysis is pre-
sented in Fig. 3. Hysteresis was tested for with statis-
tical models invoking community responses (recruit-
ment and distribution) that differed between cooling
and warming periods. Community recruitment was

measured with the leading axis (first
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with the R package 'mice’ (Schafer
1997, Van Buuren & Oudshoorn
1999). Winter SST was used as the
explanatory variable for recruitment,
since these data are available over
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Fig. 2. Time series of Bering Sea winter (November to March) sea surface tem-
perature (SST) from the extended reconstructed sea surface temperature
(ERSST) v3b dataset (1960 to 2015, top) and summer bottom temperature from
the trawl survey (1982 to 2015, bottom). Horizontal lines: post-1976/1977 mean
of each time series; vertical dashed line: division between warming period (up
to 2002) and cooling period (after 2002) used in tests for hysteresis. Grey boxes:
data from the cold anomaly (2006 to 2013) used to test for elevated early warn-
ing signals (EWS). Stars: ‘control’ years for comparison with cold temperatures

outside of the anomaly

the same time span as recruitment
data. SST data were smoothed with a
3 yr running mean prior to analysis.
The smoothing of SST data is justi-
fied by the expectation that popula-
tions are resilient to stochastic noise
in environmental conditions, but sen-
sitive to changes in the mean state
(Litzow & Mueter 2014, Litzow et al.
2014). Alternately, stronger statisti-
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Fig. 3. Schematic of the steps used in the analysis; EWS:

cal relationships to smoothed rather than raw data
may be driven by biological responses to environ-
mental conditions that are integrated over genera-
tion times (Di Lorenzo & Ohman 2013). Community
distribution was measured with trawl survey esti-
mates of mean latitude weighted by fourth-root
transformed CPUE (i.e. center of distribution). Mean
latitudes were averaged over taxa to produce a com-
munity-wide estimate of north-south distribution
changes, as in Mueter & Litzow (2008), to allow for
comparison with their results.

Bottom temperature measurements from the trawl
survey were used as the explanatory variable for dis-
tribution, since bottom temperature is the most im-
portant physical parameter explaining the distribu-
tion of Bering Sea demersal taxa (Mueter & Litzow
2008, Kotwicki & Lauth 2013). The distribution re-
sponse to temperature within the warming and cool-
ing periods was linear, so hysteresis was tested for
with generalized least squares (GLS) models allow-
ing for temporal autocorrelation in residuals (Pin-
heiro & Bates 2000) and invoking main temperature
and era effects and era x temperature interaction
effects, where ‘era’ refers to the warming and cooling
periods. A previous study found a significant residual
trend in Bering Sea community distribution which
was not explained by any climate parameter exam-
ined (Mueter & Litzow 2008). This analysis of resid-
ual trends was updated in the present study in order
to further evaluate evidence for a state-dependent
response to temperature.

The recruitment response to warming was sigmoi-
dal, so the GLS model was not appropriate. In this

EWS
prediction
supported

EWS prediction
not supported

early warning signals; SST: sea surface temperature

Account for multiple
hypothesis testing

Randomization of
community-wide
results

case a threshold generalized additive model (TGAM)
was used to test for hysteresis (Ciannelli et al. 2004,
2005). Briefly, the TGAM approach compares a sim-
ple GAM (Wood 2006) of the form:

C=5(T)+¢ (1)
with a TGAM of the form:

51 (T)+e¢ if trend is warming

(2)

s, (T)+e¢ if trend is cooling

where C is the community response variable, T is
temperature, s; and s, are smooth functions, and ¢ is
an error term. The GAM (Eq. 1) models community
response without hysteresis, and the TGAM (Eq. 2)
models a hysteric response if the temperature values
during the warming and cooling periods overlap. As
in the GLS, the threshold year in the TGAM model
was set a priori to 2002/2003, which provided the
strongest definition of distinct warming and cooling
period based on trends in summer bottom temperature
and winter SST (Fig. S1). The 2 models were com-
pared with Akaike's information criterion adjusted for
small sample size (AIC,.) to determine which best ex-
plained the data (Burnham & Anderson 2002).

A central expectation for the demonstration of hys-
teresis is that external conditions are identical during
the 2 periods under consideration, with the exception
that the direction of change in the external parame-
ter is different (Beisner et al. 2003, Petraitis & Dudg-
eon 2004). In order to evaluate the evidence for this
expectation, a second test for behavior consistent
with hysteresis was conducted on both response vari-
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ables (i.e. the first PC of recruitment and production
and the average distribution of the community). This
analysis assessed the broader evidence for environ-
mental similarity between warming and cooling peri-
ods, using an expanded set of environmental para-
meters that have been proposed as major drivers of
ecological variability in the Bering Sea (Stachura et
al. 2014). The exact set of parameters depended on
the availability of data at the relevant time scales. For
recruitment and production variability (1960 to
2013), these parameters included winter SST, winter
U- and V-wind speed, and discharge of the Kuskok-
wim River during winter and summer. For distribu-
tion variability (1982 to 2015), this analysis included
all of these variables plus bottom temperature, the
extent of winter ice cover, the sum of commercial
catch for the species under consideration, and the
first PC for distribution of the commercial catch
among species (both catch parameters lagged 1 yr
prior to the response). The broader set of external
parameters for recruitment and production variabil-
ity did not include commercial catch data since
salmon production estimates (part of the response
variable) are themselves derived from lagged catch
data. Sources for the expanded set of environmental
parameters are presented in Stachura et al. (2014).

Question 2:
Were EWS elevated during the cold anomaly?

To answer this question, evidence of elevated EWS
during the cold anomaly and false positive EWS were
tested for. The 3 EWS used were increased spatial
variability, increased spatial autocorrelation, and
increased temporal autocorrelation. The standard
deviation of log-transformed CPUE (SDL; calculated
over stations within a year) was used to measure spa-
tial variability. Trawl survey CPUE data are typically
skewed, and SDL is robust to skewness in the under-
lying data (McArdle et al. 1990, Fraterrigo & Rusak
2008). Moran's I (Moran 1950), weighted by the
inverse of distance among stations, was used to
measure spatial autocorrelation in CPUE. First-order
temporal autocorrelation, AR(1), was calculated as
Pearson's correlation coefficient for CPUE values in
years tand ¢-1 for stations where a taxon was caught
in consecutive years. The 34 yr time series in this
study was judged too short for the calculation of
trends in temporal variability using moving windows
within the time series data.

An initial examination of data for the 35 most com-
mon taxa targeted by the trawl survey showed strong

log-log relationships between mean annual sample
size (average annual count of stations where present)
and variability (coefficient of variation) for each of
the 3 EWS (p < 0.0001; Fig. S2 in the Supplement).
Ecological noise is an important hurdle for the suc-
cessful application of EWS in actual ecosystems (Lin-
degren et al. 2012, Perretti & Munch 2012, Litzow et
al. 2013). Accordingly, variability in EWS was mini-
mized by restricting analysis to taxa with a mean
annual sample size 2150. This criterion limited analy-
sis to 12 taxa (sample sizes in Table 1).

Temporal autocorrelation in EWS time series vio-
lated the assumption of independent observations, so
a Monte Carlo approach (Manly 2006) was used to
test for increased EWS values during the cold ano-
maly (2006 to 2013) compared with warm years (1982
to 2005, 2014/2015). For each EWS time series, the
actual t-value from the cold versus warm comparison
was compared with t-values from 10 000 random per-
mutations of the same length with first-order autocor-
relation equal to that actually observed in the EWS
time series. The probability of observed results under
the null hypothesis was estimated as the proportion
of permutations with a t-value equal to or more
extreme (lower) than the observed value (Manly
2006). This test was 1-tailed because our alternate
hypothesis predicted elevated EWS values during
the cold anomaly.

Because multiple hypothesis tests were conducted
(12 taxa x 3 EWS = 36 total combinations), the analy-
sis suffered from the possibility of an elevated Type I
error rate. This problem was addressed with a com-
munity-wide Monte Carlo approach to assess the
probability of obtaining the overall results under the
null hypothesis of no EWS increase during the cold
anomaly for all 12 taxa considered. This test used
10000 random permutations of the 36 taxon x EWS
combinations at levels of autocorrelation observed in
the original data. In each permutation of the 36 time
series, the number of significant results (p < 0.05) was
recorded, and the probability of obtaining observed
results under the null hypothesis was calculated as
the proportion of the 10 000 permutations resulting in
as many (or more) rejections of the null hypothesis as
observed in the actual data. None of the pairwise cor-
relations among EWS time series were significant
after false discovery rate control (Verhoeven et al.
2005) and control for temporal autocorrelation with
the Modified Chelton method (Pyper & Peterman
1998). This lack of significant relationships among
time series justified the community-wide randomiza-
tion approach without consideration of intercorrela-
tion among EWS time series.
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A number of taxa sampled in the Bering Sea trawl
survey show changes in distribution during cold
years, in particular in response to increased extent of
the ‘cold pool' of bottom water <1°C (Mueter & Lit-
zow 2008, Kotwicki & Lauth 2013). Additionally, a
number of taxa may show behavioral changes during
cold periods (e.g. burying in bottom sediment, de-
layed seasonal migration) that may make them less
available to sampling gear (Stevenson & Lauth 2012).
Accordingly, there is the possibility that EWS statis-
tics derived from CPUE data might produce false
positives by responding directly to temperature vari-
ability rather than to changes in community resili-
ence per se. For instance, distribution for some taxa
might be more spatially variable in cold conditions,
regardless of changes in resilience. The hypothesis
that elevated EWS during the cold anomaly were
false positive signals related to direct temperature
effects, rather than declining resilience and critical
slowing down, was tested by comparing EWS during
the cold anomaly with EWS from a control group of
the 3 years of lowest observed raw bottom tempera-
ture outside of the cold anomaly (1994, 1995, 1999).
This analysis used raw bottom temperature (uncor-
rected for sampling date) because the effects of tem-
perature at the time of sampling on EWS were of
interest.

RESULTS

Question 1:
Is there evidence consistent with hysteresis?

The first PC of recruitment time series explained
39% of total variance, and showed the strongest
loadings on Greenland halibut (0.49), Tanner crab
(0.46), chum salmon (-0.36), sockeye salmon (-0.52),
and coho salmon (-0.39). The TGAM model invoking
different responses during the warming and cooling
eras (AIC. = 150.9) was much better than the GAM
invoking a single response of recruitment to SST
across the entire time series (AIC, = 174.8), indicating
strong support for a model of separate community
responses to warming and cooling, below ~2.2°C
(Fig. 4). Plots for individual species showed that Chi-
nook, coho, and sockeye salmon, Tanner crab, and
walleye pollock all showed state-dependent relation-
ships with SST that were consistent with hysteresis
(Fig. S3 in the Supplement). Analysis with SST, wind
speed, and river inputs also showed a state-depen-
dent response of community-wide recruitment to the
overall variation in this broader set of environmental
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Fig. 4. Indications of hysteresis in response of community re-
cruitment patterns to sea surface temperature (SST). Plot
shows change in the leading axis of recruitment variability
for 10 taxa (PC1 score) during warming period (1960 to 2002,
green open circles) and subsequent cooling period (2003 to
2013, blue filled circles). Arrows on regression lines: predom-
inant direction of temperature change in each period; dashed
lines: 95 % CI around regressions. The plotted threshold gen-
eralized additive model (TGAM) was superior to a non-
hysteresis model of PC1-SST relationships (AAIC, = 23.8)

variables (Fig. S4 in the Supplement; with the TGAM
model outperforming the GAM model, AAIC, = 18.5).
The GLS test of era effects on the temperature—
distribution relationship found a significant effect of
both era (p =0.0001) and the era x temperature inter-
action (p = 0.0002). Thus, community distribution
appeared to respond to temperature change differ-
ently during the warming and cooling periods
(Fig. 5a). Similar results were obtained using raw
temperature, unadjusted for sampling date (data not
shown). Analysis with the broader set of external
parameters, including commercial fishing effects and
the more extensive set of climate patterns, produced
an inferior model for explaining variability in distri-
bution when compared with the model invoking only
bottom temperature as a covariate (AAIC. = 26.9).
Neither the era effect (p = 0.08) nor the era x PC1
effect (p = 0.09) were significant in the model invok-
ing the broader set of covariates (Fig. S5 in the Sup-
plement). The stronger performance of the simpler
model invoking only bottom temperature is consis-
tent with the view that distribution of demersal taxa
in the Bering Sea is specifically driven by bottom
temperature, rather than the broader measures of
ecosystem state (Wyllie-Echeverria & Wooster 1998,
Mueter & Litzow 2008, Kotwicki & Lauth 2013).
Residuals from the temperature—distribution rela-
tionship during 1982 to 2006 were previously noted
to show a rising trend, which was ascribed to internal
community dynamics (Mueter & Litzow 2008). Up-
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Fig. 5. Indications of hysteresis in response of community dis-
tribution to bottom temperature. (a) Change in the average
center of distribution (distance from mean latitude, averaged
across 12 taxa) during warming period (1982 to 2002, green)
and subsequent cooling period (2003 to 2015, blue). Arrows
on regression lines: predominant direction of temperature
change in each period. (b) Change in nonlinear dynamics be-
tween warming and cooling period: annual residuals from
regressions in (a). Dashed lines: 95% CI around regressions

dated analysis of the trend in residuals from the
temperature—distribution relationship during 1982 to
2015 shows a decline in residual values during the
cooling period, creating a highly significant dome-
shaped trend throughout the time series (GAM; R? =
0.43, p = 0.0003; Fig. 5b). Together, the results in
Figs. 4 & 5 and Fig. S4 support the conclusion that the
Bering Sea community showed evidence consistent
with hysteresis during the cold anomaly.

Question 2:
Were EWS elevated during the cold anomaly?

Randomization tests resulted in p-values < 0.05 for
15 of the 36 EWS examined (Table 1). Three taxa
(Alaska plaice, walleye pollock, yellowfin sole)
showed p-values < 0.05 for all 3 EWS (Fig. 6). The

result of 15 rejected null hypotheses out of 36 total
was not repeated in the 10000 community-wide
permutations (p < 0.0001; Fig. 7), indicating that the
EWS during the cold anomaly were not Type I errors,
but did signal declining community resilience.
Complete time series for all EWS are presented in
Tables S1 to S3 in the Supplement.

Raw bottom temperatures were slightly lower dur-
ing the ‘control’ years for tests for false positive EWS
(1994, 1995, 1999) than during the cold anomaly
(control mean + SE: 1.41 + 0.26°C; cold anomaly
mean + SE: 1.62 + 0.16°C). The ‘control’ years were
therefore an honest comparison in the test for tem-
perature effects per se on EWS behavior. However, in
spite of the greater cold during the control period, the
3 EWS were lower during the control period than
during the cold anomaly (Wilks' A = 0.79, p < 0.00001;
Fig. 8). This result leads to rejection of the hypothesis
that elevated EWS during the cold anomaly were
false positives driven purely by cold-mediated
changes to distribution or behavior.
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Fig. 6. Early warning signal time series for taxa showing 3

significant increases during cold anomaly. Vertical dashed

lines: cold anomaly (lines at 2005.5, 2013.5). All time series
standardized as mean 0, unit variance
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Fig. 7. Results of 10000 community-wide randomizations

testing null hypothesis of no increase in early warning sig-

nals (EWS) during cold anomaly: number of individual null

hypotheses rejected at p < 0.05 out of 36 total taxon x EWS

combinations. Observed result (15 null hypotheses rejected)
indicated by dashed vertical line

DISCUSSION

The Bering Sea cold anomaly offers an empirical ex-
ample that is consistent with theoretical predictions
for EWS. Community-level patterns of recruitment
variability (Fig. 4) and distribution (Fig. 5) showed sta-
tistical evidence of temperature responses that dif-
fered between periods of warming and cooling, and
these results were repeated with analysis of recruit-
ment variability using a broader set of external para-
meters (Fig. S4 in the Supplement). These observa-
tions are consistent with hysteresis, and therefore
provide reasonably strong indications that alternative
stable states may operate in this system (Dudgeon et
al. 2010, Petraitis & Hoffman 2010, Wang et al. 2012).
The alternative stable state model then predicts that
elevated EWS should be observed in the warm com-
munity state under the persistent perturbation of the
cold anomaly; this prediction was well supported
(Table 1). The observation of significantly elevated
values in 15 of 36 individual EWS time series is ex-
tremely unusual under the null hypothesis of no de-
cline in community resilience (Fig. 7), and these in-
creases in EWS are not consistent with a response to
cold per se (Fig. 8). These results are consistent with a
decline in community-level resilience under the per-
sistent perturbation of the cold anomaly, and this com-
munity-level approach to EWS monitoring is consis-
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Fig. 8. Comparison between cold anomaly (2006 to 2013) and
‘control’ of 3 other cold years (1994, 1995, 1999): coefficients
from analysis of variance. Raw temperature (unadjusted for
sampling date) was similar between the cold anomaly and
‘control’ years, but early warning signals were significantly
higher during the cold anomaly (Wilks' A =0.79, p <0.00001).
Plotted values are coefficients for comparison of cold anom-
aly with ‘control’ years + SE. All data standardized as 0 mean,
unit variance

tent with the strong community-level responses to
temperature variability in the system (Figs. 4 & 5).
While differences in EWS among species were obser-
ved (Table 1), the mechanisms driving these species-
level differences are beyond the scope of this study,
and likely require more detailed understanding of
complex ecological dynamics in the Bering Sea than
currently exists (Mueter & Litzow 2008, Litzow &
Hunsicker 2016).

The strength of inference generated by these ob-
servations is limited by the fact that a critical transi-
tion from the warm community state to the cold com-
munity state did not occur. If the alternate stable
state model does apply to this system, the cold anom-
aly perturbation was presumably too short or not
severe enough to force the system through a critical
transition. Most empirical studies of EWS have con-
centrated on retrospective tests for elevated EWS
prior to historical ecosystem shifts (Boettiger & Hast-
ings 2012a, Wouters et al. 2015). By elucidating the
type of model that may operate in the study system,
and then testing predictions concerning the opera-
tion of EWS arising from that model, this study offers
a complementary approach for empirical EWS re-
search. A central question for the application of EWS
as a management tool is whether the nonlinear eco-
logical models underlying EWS theory are actually
applicable in the large, complex systems that are of
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interest to managers (Litzow & Hunsicker 2016). By
demonstrating support for theoretical predictions
concerning EWS behavior under persistent perturba-
tion, this study helps to demonstrate the applicability
of EWS theory to complex ecosystems, and may thus
contribute to the evaluation of the reliability of EWS
for providing managers with early indication of
impending ecosystem shifts. The results of this study
agree with previous studies from Alaska that have
found elevated EWS prior to historical shifts in trawl
surveys and fisheries catches (Litzow et al. 2008,
2013). These results are also consistent with a meta-
analysis showing that EWS are more likely to be sup-
ported in empirical studies when behavior consistent
with nonlinear ecological models, including hystere-
sis, is present (Litzow & Hunsicker 2016).

The magnitude of ecosystem services provided by
the eastern Bering Sea, and the stakes for managing
the system correctly, are enormous. Annual ex-vessel
prices for groundfish and salmon fisheries exceed one
billion US dollars (www.npfmc.org, www.adfg.alaska.
gov). In general, eastern Bering Sea fisheries are sus-
tainably and conservatively managed (Witherell et al.
2000, Ianelli 2005, but see Hilborn 2006, Loring 2013).
However, with the notable exception of the cold
anomaly considered in this study, climate variability
and anthropogenic climate change have produced
rapid warming in the eastern Bering Sea over recent
decades; the linear trend fit to annual winter SST data
in Fig. 2 is statistically significant (GLS model ac-
counting for temporal autocorrelation, p = 0.03) and
shows an increase of 0.64° between 1960 and 2015.
The system is therefore being progressively pushed
from the set of conditions under which ecological un-
derstanding and fisheries management have devel-
oped, with the attendant possibility of an ‘ecological
surprise’ outside of our current understanding (Doak
et al. 2008). This possibility is certainly not lost on sci-
entists and fishery managers, and there is a great
deal of interest in developing scientific advice for
managing the Bering Sea ecosystem under climate
change (Haynie & Pfeiffer 2013, Hollowed et al.
2013). However, current approaches for monitoring
the status of the ecosystem rely entirely on tracking
parameter means, or other statistics of central ten-
dency (Zador 2015). While the utility of EWS is still
open to debate, there is a strong consensus among
ecologists that monitoring mean system state alone is
likely inadequate in systems showing nonlinear re-
sponses to perturbation, as mean values may reveal
ecological changes only after these changes have be-
come firmly entrenched (Folke et al. 2004). By
demonstrating the response of EWS to a perturbation,

and by defining baseline levels of EWS derived from
the trawl survey (see Tables S1 to S3 in the Supple-
ment), this study lays the foundation for introducing
EWS into the ecosystem monitoring program for the
eastern Bering Sea. 'Promoting sustainable fisheries
and communities' is an identified goal for EBFM in
the Bering Sea (Hollowed et al. 2011). Tracking
changes to resilience through EWS is a way to deter-
mine if that goal is being achieved.

The results of this study apply only to regime shifts
in a narrowly defined sense—as critical transitions
between alternative states in the fold bifurcation
model. The 'regime shift' is something of a blanket
concept, suffering from the lack of a universally
accepted definition, and sudden shifts that may have
arisen from many different types of underlying
dynamics have been labeled with the term (Lees et
al. 2006, Litzow & Mueter 2014, Conversi et al. 2015).
The results of this study should not be generalized
beyond the narrowly-defined class of regime shift
considered here. In particular, red noise processes
(i.e. random, autocorrelated noise) may drive many
high-profile ‘regime shifts’ in marine ecosystem time
series (Rudnick & Davis 2003, Di Lorenzo & Ohman
2013). While it is possible that EWS may precede
such shifts (Kéfi et al. 2013), this possibility has
received less theoretical support than EWS arising
from the fold bifurcation model (Dakos et al. 2015).

These results indicate that the application of EWS
to large ecosystems, using observational datasets,
deserves continued research in spite of negative
results in other studies (e.g. Bestelmeyer et al. 2011,
Lindegren et al. 2012, Burthe et al. 2016). A particu-
lar challenge for empirical studies is that EWS, as
they are currently developed, can only give man-
agers a warning that some sort of shift is becoming
more likely, without providing any information about
the nature or timing of the shift (Dakos et al. 2015). In
this example, an intuitive interpretation is that in-
creased EWS were an indication that a sudden
switch back to the cold community state became
more likely during the cold anomaly. For directional
climate change, where the system is progressively
being pushed away from previously observed condi-
tions, similar inferences based on system history will
be less useful. In these situations, it may be more
practical to attempt to use EWS for information about
the timing of a potential shift, rather than its nature.
Drake & Griffen (2010) related the magnitude of EWS
signals (in units of SD) to the time remaining until a
shift in experimentally manipulated Daphnia popula-
tions under laboratory conditions. Developing similar
reference points for EWS in the statistically noisier
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natural world, where EWS cannot be studied in the
absence of confounding factors, will require that
results be compared across many studies.

This study offers some guidance for the methods
used in empirical EWS research. Although the length
of the trawl survey time series used here compares
favorably with the length of time series available for
most marine ecosystems, the 34 yr time series was too
short for the calculation of temporal EWS, such as
variability or autocorrelation, over sliding windows
(Bestelmeyer et al. 2011, Wang et al. 2012). Spatial
indicators may generally be preferable to temporal
indicators in data-limited situations, as they can be
calculated within each time step in the data without
reference to sliding windows, and because they may
offer longer warning of an impending shift in the
system than EWS calculated with sliding windows
(Guttal & Jayaprakash 2009, Dakos et al. 2010). The
Bering Sea survey, with 285 stations sampled in
every year (Fig. 1), provides an excellent basis for
calculating spatial EWS. Trawl survey data are avail-
able in a number of other marine ecosystems glob-
ally, and these time series are appealing candidates
for EWS research. In addition to using spatial EWS,
this study also used temporal autocorrelation calcu-
lated as the correlation coefficient for CPUE values at
stations where a taxon was present during consecu-
tive years, rather than as first-order autocorrelation
over a sliding window. This approach may be useful
for the application of temporal autocorrelation with-
out the liabilities associated with sliding windows.
Tests for false positives (Fig. 8) are important for gen-
erating the confidence in EWS that will be required
for their uptake by managers (Boettiger & Hastings
2012b). Finally, the high levels of EWS noise in this
study (e.g. time series in Fig. 6) could be countered
by considering the relationship between sample size
and variability (Fig. S2) and by conducting tests
across multiple populations (Table 1, Fig. 7). This ap-
proach corroborates earlier studies that have noted
the importance of conducting multiple EWS tests to
counter noise (Lindegren et al. 2012, Litzow et al.
2013).

The finding that the eastern Bering Sea community
may show hysteresis also has implications for under-
standing ecological responses to climate change. In
traditional statistical approaches, the relationships
between climatic and biological variables are as-
sumed to be time-invariant, and this assumption is
rarely evaluated (Ciannelli et al. 2012, Schmidt et al.
2014, Ye et al. 2015). However, time-evolving, state-
dependent driver-response relationships, as shown
here, are a common feature of ecosystems (Deyle et

al. 2013). Failure to account for these state-dependent
driver-response relationships may impair ecological
understanding, and may result in overly simplistic
advice to managers, such as an expectation of a rever-
sion to earlier biological properties upon the resump-
tion of a multi-year cold period in the Bering Sea.

Understanding the mechanisms underlying appar-
ent hysteresis (Figs. 4 & 5) is therefore critical for
complete understanding of eastern Bering Sea dyna-
mics. Community resilience increases with diversity
(Frank et al. 2006), and warming since the 1980s has
increased diversity of the Bering Sea demersal com-
munity (Mueter & Litzow 2008). This increase in
diversity may therefore explain the apparent hys-
teresis in the community response to temperature as
diversity-driven differences in resilience of the cold
and warm community states. Beyond this general
observation, understanding of the eastern Bering Sea
ecosystem is not advanced enough to provide a
mechanistic understanding of possible hysteresis in
the system. While the eastern Bering Sea is an
extremely well-studied ecosystem, mechanistic stud-
ies typically occur on temporal scales of 3 to 5 yr and
are therefore too short to allow investigation of non-
stationary driver-response relationships at decadal
time scales. Studies using trawl survey data from
other ecosystems to evaluate species interactions that
are believed to drive alternative stable state dynam-
ics suggest a possible approach for expanding this
mechanistic understanding in the Bering Sea (Huss
et al. 2013, Gardmark et al. 2015). Previous analysis
for 1982 to 2006, when the trend in temperature—
distribution residuals was monotonically rising,
failed to find any relationship between the residual
trend and a suite of non-temperature climate param-
eters (Mueter & Litzow 2008), although the effects of
other external forcings on the system (e.g. commer-
cial fishing; Litzow et al. 2014) or internal forcings
(e.g. density dependence; Spencer 2008, Kotwicki &
Lauth 2013) were not examined. The updated analy-
sis, showing a dome-shaped pattern in these residu-
als across the warming and cooling eras (Fig. 5b)
hints at strong nonlinearities in community dynam-
ics, though the underlying mechanisms remain
unclear. This pattern in temperature—distribution
residuals indicates increasing temperature effects
during the warming period, and declining effects of
temperature during the cooling period. This result,
and the failure of recruitment PC1 to retrace the sig-
moidal temperature effect during the cooling era
(Fig. 4) suggest a 'ratchet’ response to temperature
change in the system, where warming effects are not
reversed by subsequent cooling.
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Finally, there are some important theoretical
caveats concerning the interpretation of these re-
sults. Although the fold bifurcation model is often
invoked for studies of EWS, versions of this model
can in fact fail to produce EWS prior to a critical
transition (Boerlijst et al. 2013). Aligning a study
system with the alternative state model is therefore
no guarantee that shifts in that system will be pre-
ceded by EWS. Additionally, while evidence of hys-
teretic driver-response relationships is often taken
as evidence of alternative states, this need not be
the case. Asymmetry in a single basin of attraction
may produce apparent hysteresis in the absence of
alternative states (Beisner et al. 2003). Demonstrat-
ing alternative states also requires observation of
dual biological states at identical levels of external
conditions (Petraitis & Dudgeon 2004). Though this
condition was supported through a test involving a
broader set of climatic and exploitation-related
parameters (Fig. S4), guaranteeing literally identical
conditions over time is impossible in any large eco-
system.

To a large extent, these caveats represent the lim-
itations inherent in observational studies of complex
ecological dynamics, where variability due to un-
controlled or unexamined variables is inevitable,
and alternate interpretations of results are difficult
to rule out. In spite of these limitations, observa-
tional studies are necessary for evaluating the utility
of EWS in large ecosystems where controlled exper-
iments are impossible. Testing for evidence of hys-
teresis and elevated EWS allowed me to confront
model predictions with the data that are available
from this system, and these results are one indica-
tion of how EWS theory might work in the real
world. Ultimately, determining the degree to which
complex systems such as the Bering Sea are suc-
cessfully described by theoretical predictions for
EWS will require the combined results of many such
studies.
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